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Abstract. We demonstrate the impact of chromatic dispersion on the phase coding method in a double
Mach-Zehnder implementation of an interferometric system for quantum cryptography. Formulas have
been developed to explore detailed studies of the modifications on energy and position spectra which
arise if chromatic dispersion is taken into account. Examples demonstrate the shifting of spectra and the
appearance of oscillations depending on the wavelength and spectral broadness as well as on the phase
shifters, absorbers and the dimensions of the interferometric set-up.

PACS. 03.67.Dd Quantum cryptography – 03.67.Hk Quantum communication

QICS. 23.05.+f Fiber-based quantum communication

1 Introduction

Chromatic dispersion (CD) plays an important role in in-
terferometers, that can be established with single-mode
optical fiber components for quantum key distribution
(QKD) using phase coding [1,2]. Originally, the phase cod-
ing method with optical fibers and a single Mach-Zehnder
interferometer (MZ) was introduced (see Fig. 1) together
with entanglement-based quantum cryptography [3], but
it can also be used with the single-particle schemes. In or-
der to record stationary interferences, it unfortunately is
very difficult to keep the path difference stable (necessary
for QKD) in such an extended interferometer (each arm
should be several tenth of kilometers).

Therefore a better practical set-up consists of 2 un-
balanced MZ [4], shown in Figure 2. Figures 1 and 2 are
discussed in more detail in Sections 4 and 5. These 2 inter-
ferometers are connected in series by a single optical fiber
(fiber g in Fig. 2). The first Mach-Zehnder interferometer
(1.MZ) on the left side belongs to Alice (A) and the second
Mach-Zehnder interferometer (2.MZ) on the right side be-
longs to Bob (B), the two communication partners. One
pulse entering Alice’s side (input a) is split into two. The
two pulses propagating one after the other along the sin-
gle transmission fiber g are denoted by S (for short path)
and L (for long path). If the path differences in both in-
terferometers are different, four pulses are created after
traveling through Bob’s 2.MZ. But if the path differences
are equal, only 3 pulses are created. That case is indicated
schematically in Figure 2. Two of them, noted SS (short-
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short) and LL (long-long), are not relevant, as they show
no interference effect. The central pulse, however, corre-
sponds to two possible paths: SL or LS, which are indis-
tinguishable and which therefore interfere. The choice of
the phase shifts by A and B gives the encoding-decoding.
A timing window can be used to distinguish between in-
terfering and non-interfering events. This set-up is much
more stable than the original one, since the pulses ac-
tually follow the same path g. The disturbances due to
environmental perturbations like length variations affect
both positions of the photons equally. Therefore, the path
lengths of the single interferometers should be small in
comparison to the length of the fiber g in between.

We recognize that the imbalance of the interferometers
must be chosen in such a way that it is possible to clearly
distinguish the three spatial (or temporal) peaks and thus
discriminate interfering from non-interfering events. It is
known that CD displaces and broadens these peaks. In
that case, CD can cause problems for quantum cryptogra-
phy. For instance, schemes implementing phase- or phase-
and-time-coding rely on photons arriving at well-defined
times, that is on photons well localized in space. However,
in dispersive media like optical fibers, different group ve-
locities act as a noisy environment on the localization of
the photon as well as on the phase acquired in an in-
terferometer. Hence, the broadening of photons featuring
non-zero bandwidth must be circumvented or controlled.
This implies working with photons of small bandwidth,
or, as long as the bandwidth is not too large, operating
close to the wavelength where CD is zero, i.e. for standard
fibers around 1312 nm. There are also special fibers, called
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Fig. 1. MZ interferometer: 1 input a, 2 outputs h, g, 2 beam
splitters (BS), 2 optical fibers (i = c, d), fiber lengths li, phase
factors Pi = exp{−ık∆i}, ∆i are phase shifters, transmission
coefficients Ti = exp{−2liai} (ai are absorption factors); posi-
tion distributions (or time pulses) are drawn.

dispersion-shifted, with a refractive index profile which
causes the CD to go to zero around 1550 nm. Methods
of dispersion compensation or filtering are therefore ap-
plied [5,6]. CD becomes a serious issue depending on the
used bandwidth of the photons. Utilizing photon pairs cre-
ated by spontaneous parametric down-conversion SPDC
(δλ ≈ 10 nm, corresponding to 1.2 × 103 GHz) is more
critical than faint laser pulses with pulsed diodes with a
width of 10 to 100 GHz or more. We will show that even
the latter sources are heavily disturbed by CD.

From the considerations above it can be assumed that
a detailed description of the processes, which arise if CD
comes into play, could be of fundamental interest to the
specialist dealing with fiber optics and phase-coding sys-
tems using MZ interferometers in quantum cryptography.
It is the intention of this paper to theoretically investigate
in detail the effects which appear, if CD in two MZ inter-
ferometers in series is taken into account. Using Gaussian
wave packets, formulas are developed which describe both,
wavelength spectra and position spectra, arising in a dou-
ble MZ implementation of an interferometric system for
quantum cryptography.

The paper is organized as follows: in Section 2 the
wave packet description is shortly presented. In Section 3
CD is introduced. The action of the two beam splitters
in an interferometer is specified in Section 4, whereas in
Section 5 the double MZ-System is analyzed. Section 6
presents results and discussions of an instructive example
and finally, in Section 7, conclusions are drawn.

2 Wave packet description

We are investigating one incoming beam, let us say a beam
in path a (Fig. 1). The basic approach for the momentum
of photons of this incoming beam in path a is given ac-

cording to a Gaussian function

αa(k) = [2π(δk)2]−1/4 exp
{
− (k − k0)2

4(δk)2

}
, (1)

where the normalization condition for the intensity Ia =∫
α2

a(k)dk = 1 holds (integration boundaries are always
−∞ to +∞). The wave number k is associated with the
wave length λ via the equation k = 2π/λ. The relation
p = �k connects the momentum p and wave number k. A
mean wave number k0 > 0 is important for describing an
experimental wave length distribution. The corresponding
wave function ψa(x) is given by Fourier transformation
and reads as

ψa(x) =
1√
2π

∫
αa(k) exp{ikx}dk

=
[
2(δk)2

π

]1/4

exp{−(δk)2x2 + ık0x}, (2)

where (δk)2 is the mean square deviation of wave num-
bers. The suitable momentum and position spectra are
calculated as

α2
a(k) =

√
1

2π(δk)2
exp

{
− (k − k0)2

2(δk)2

}
(3)

and

|ψa(x)|2 =

√
2(δk)2

π
exp{−2(δk)2x2} (4)

respectively. Again, the normalization condition for inten-
sity can be written as Ia =

∫ |ψa(x)|2dx = 1. The mo-
mentum spectrum α2

a(k) is an experimental quantity. A
Gaussian spectrum is definitely an idealization, but a very
reasonable and even realistic one. The advantage of Gaus-
sian shaped momentum and position spectra is mainly
given by mathematical simplicity of the formalism and by
the easy interpretation of the results.

3 Chromatic dispersion (CD)

There are two arms c and d in the first Mach-Zehnder
(MZ) interferometer and two outputs g and h (Fig. 1).
Initially we assume a MZ in vacuum. It follows that, on
the one hand, the beam paths c and d are characterized by
path lengths lc and ld giving rise to phase factors e−ıklc

and e−ıkld respectively. On the other hand, phase shifts
∆c and ∆d create phase factors Pc = e−ık∆c as well as
Pd = e−ık∆d . Finally, absorption factors ac and ad entail
transmission coefficients Tc = e−2lcac and Td = e−2ldad to
be included if desired. These transmission factors have to
be functions of the lengths of the absorbers to be consid-
ered.

Since the group velocity v and the coefficient Dλ0 of
CD are the most important parameters governing pulse
propagation in dispersive media like fiber glass, it is nec-
essary to examine their dependence on the wavelength [7]:

v =
c0
N
, N = n− λ

dn

dλ
, (5)
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Table 1. Dispersion coefficients Dλ0 and the parameter κ =
−Dλ0λ2

0c0/(4π) for 3 particular wavelength λ0 [7].

λ0[nm] Dλ0

[ ps

km nm

]
κ[nm]

870 –80 1.4456
1312 0 0
1550 17 –0.3072

where c0 is the light velocity in vacuum, n = n(λ) is
the refractive index and N = N(λ) is called group in-
dex. Including CD, it can be shown that in a fiber glass of
length l the phase factor exp {− ıkl} has to be replaced by
exp {− ı(N0k−κk2)l}, where N0 = N(λ0) is the group in-
dex for the mean wavelength λ0 and κ = −Dλ0λ

2
0c0/(4π).

Caused by CD, the exponential function is extended by
an expression which is proportional to k2. Thereby the
dispersion coefficient is defined through

Dλ0 = −λ0

c0

∂2n

∂λ2

∣∣∣∣
λ=λ0

. (6)

Table 1 presents some dispersion coefficients Dλ0 and κ−
values for three distinguished wavelengths λ0.

4 Calculation of spectra behind the first MZ

Here we proceed describing the action of beam splitters [8]
and the superposition of wave packets as formulated in [9].
The corresponding picture is drawn in Figure 1. The total
phase factor in a fiber of length lj is given by

exp [−ıkAj − ık2Bj ], Aj = ∆j +N0lj,

Bj = κlj , j = c, d. (7)

The properties of a 50:50 beam splitter BS can be de-
scribed by the Hadamard transformation Ĥ :

Ĥ =
1√
2

(
1 1
1 −1

)
. (8)

If only one input (beam a) exists, the wave number func-
tions αd,c(k) in the two beam paths d and c directly in
front of the second BS are given by

αd,c(k) =
1√
2
αa(k)

√
Td,c exp [−ıkAd,c − ık2Bd,c]. (9)

Consequently, the wave number functions behind the MZ
are

αh,g(k) = Ĥαd,c(k) =
1√
2
[αd(k) ± αc(k)]. (10)

The related wave number spectra immediately behind the
first MZ are therefore

|αh,g(k)|2 =
1
4
α2

a(k){Td + Tc

± 2
√
TdTc cos[k(Ad −Ac) + k2(Bd −Bc)]}. (11)

Because of CD, a quadratic term in the argument of the
cosine appears, indicating higher frequencies depending
on the length of the fiber. By Fourier transformation of
(9) the position wave functions ψd,c(x) become after some
calculation

ψd,c(x) =

√
(δk)Td,c√

2π
1√

1 + ı4(δk)2Bd,c

× exp

{
− 1

1
4(δk)4 + 4B2

d,c

[
1

(δk)2

[
k0Bd,c +

(Ad,c − x)
2

]2

+ı
k0

4(δk)4
(Ad,c − x) + ıBd,c

[
k2
0

4(δk)4
− (Ad,c − x)2

]]}
.

(12)

Behind the first MZ the position wave functions of both
directions d and c become

ψh,g(x) = Ĥψd,c(x) =
1√
2
[ψd(x) ± ψc(x)]. (13)

Hence the corresponding position spectra are

|ψh,g(x)|2 =
1
2
[|ψd(x)|2 + |ψc(x)|2 ± I(x)]. (14)

The single quantities are carried out below:

|ψd,c(x)|2 = Td,c
(δk)√
2πωd,c

× exp
{
−2(δk)2

ωd,c
[(Ad,c − x) + 2k0Bd,c]

2

}
,

ωd,c = 1 + 16(δk)4B2
d,c,

I(x) = ψd(x)ψc(x)∗ + ψd(x)∗ψc(x)
= cdc ed ec cos(ad − ac + adc),

cdc =
√
TdTc

√
2
π

(δk)
1

(ωdωc)1/4
,

ed,c = exp

{
−4(δk)2

ωd,c

[
k0Bd,c +

(Ad,c − x)
2

]2
}
,

ad,c =
1
ωd,c

{k0(Ad,c − x)

+Bd,c[k2
0 − 4(δk)4(Ad,c − x)2]},

adc =
1
2

arctan
[

4(δk)2(Bd −Bc)
1 + 16(δk)4BdBc

]
.

From this equation it can be observed that through ωd,c

or rather through Bd,c the pulses become broader as a
function of the length of the fiber. This limits the process
of phase coding in quantum cryptography as we will see
below.

According to [5], the quantity ωd,c can be expressed as
(δk = 2π(δλ)/λ2

0)

ωd,c = 1 + 16π2

(
c0
λ0

)2 (
δλ

λ0

)2

[∆τd,c]2,

∆τd,c = (δλ)Dλ0 ld,c. (15)
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Fig. 2. Two MZ interferometers
in series: 1 input a, 3 outputs
h, o, p, 4 beam splitters (BS),
5 optical fibers (i = c, d, g, m,
n), fiber lengths li, phase fac-
tors Pi = exp{−ık∆i}, ∆i are
phase shifters, transmission co-
efficients Ti = exp{−2liai} (ai

are absorption factors); position
distributions (or time pulses) are
drawn.

The Gaussian uncertainty in time due to CD is then de-
fined by the dispersion time ∆τd,c. If the dispersion coeffi-
cient Dλ0 is zero, no broadening of the Gaussian position
spectra |ψd,c(x)|2 appears.

5 Spectra behind the second MZ

As a next step, we analyze two MZ interferometers as de-
picted in Figure 2. The second interferometer is composed
of the third and fourth beam splitter and has two arms
m and n as well as two outputs o and p. The single input
for this second MZ is fiber g. At the end of this fiber, i.e.
directly in front of the 3. BS, the following wave function
α′

g(k) can be specified:

α′
g(k) =

√
Tgαg(k) exp{−ıkAg − ık2Bg}. (16)

Here analogue to (9) the transmission coefficient Tg, the
phase quantity Ag and the dispersion quantity Bg in fiber
g have been specified. Inside the second MZ interferom-
eter but just before the 4. BS the related wave functions
read

αm,n(k) =
1√
2

√
Tm,n α

′
g(k) exp{−ıkAm,n − ık2Bm,n},

(17)
and on exit of the second interferometer the wave number
functions are

αo,p(k) = Ĥαm,n(k) =
1√
2
[αm(k) ± αn(k)], (18)

and therefore the wave number spectra |αo,p(k)|2 behind
the two interferometers can be written as

|αo,p(k)|2 =
1
4
|αg(k)|2Tg{Tm + Tn

∓ 2
√
TmTn cos[k(Am −An) + k2(Bm −Bn)]} (19)

with |αg(k)|2 from (11) and k = 2π/λ. Now, just as well as
above, we use Fourier transformation of αo,p(k) in order
to get the position wave functions ψo,p(x) in direction o
and p. The result is:

ψo,p(x) =
1
4

1√
2π

√
Tg[2π(δk)2]−1/4

× {Jdm(x) − Jcm(x) ∓ Jdn(x) ± Jcn(x)}. (20)

The upper sign applies to output o and the lower sign
applies to output p. Here the complex quantities Jij(x)
are (ij ≡ dm, cm, dn, cn)

Jij(x) = cij
√
TiTj exp

{
ı+ 4(δk)2δij

γij

×[−δijk2
0 + x′ijk0 + ı(δk)2x′2ij ]

}
,

cij =

√
4π(δk)2

1 + ı4(δk)2δij
, δij = Bg +Bi +Bj ,

x′ij = x−Ag −Ai −Aj ,

γij = 1 + 16(δk)4δ2ij . (21)

Finally, the position spectra are obtained:

|ψo,p(x)|2 =
Tg

32π
√

2π(δk)
{|Jdm(x)|2 + |Jcm(x)|2

+ |Jdn(x)|2 + |Jcn(x)|2 + 2IIo,p(x)}, (22)

where

IIo,p(x) = −�[Jdm(x)J∗
cm(x)] ∓ �[Jdm(x)J∗

dn(x)]
±�[Jcm(x)J∗

dn(x)] ±�[Jdm(x)J∗
cn(x)]

∓�[Jcm(x)J∗
cn(x)] −�[Jdn(x)J∗

cn(x)]. (23)

Figuring out the above expressions we obtain:

|Jij(x)|2 = 4π(δk)2
√

1
γij

TiTj

× exp{−2(δk)2[x′ij − 2δijk0]2/γij},
�[Jij(x)J∗

kl(x)] = c′ij(x)c
′
kl(x) cos[zij(x) − zkl(x)],

c′ij(x) = 2(δk)
√
π
√
TiTj(γij)−1/4

× exp{−2(δk)2[x′ij − δijk0]2/γij},
zij(x) =

1
2

arctan[4δij(δk)2]

+
1
γij

[k2
0δij − k0x

′
ij − 4(δk)4δijx′2ij ].

(24)
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Fig. 3. Without CD and absorption, lg = 50km, ∆d = ∆m =
1 cm, ld = lc = lm = ln = 1m, δλ/λ0 = 2 × 10−4, λ0 =
1550 nm, N0 = 1.5, ∆c = ∆g = ∆n = 0.

The quantity γi,j is again responsible for the broadness of
the Gaussian functions. But in this case, the sum δi,j =
Bg +Bi +Bj depends on the length lg of the fiber (Bg =
κlg) between the two interferometers. This length can be
very large in quantum key distribution using phase coding
methods. We return to this point in the next section.

In the next section, these spectra are displayed using
certain parameters demonstrating the influence of chro-
matic dispersion in the process of phase coding in quan-
tum cryptography.

6 Results and discussion

By means of some examples, the influence of CD on the
position and wavelength spectra is illustrated.

Figures 3 and 4 exemplify position distributions
|ψo(x)|2 and |ψp(x)|2 of (22), behind the two interferome-
ters shown in Figure 2, including parameters given in the
figure capture. In this example no CD (and no absorp-
tion) is considered. The arms of the two interferometers
have equal lengths of 1 m each and in arm d and m equal
values of phase shifts ∆d = ∆m = 1 cm entail phase fac-
tors Pd = exp{−ık∆d} and Pm = exp{−ık∆m}, respec-
tively. These phase shifts are sufficient to create separated
wave packets in space (or time pulses) behind the two
interferometers which are connected by a fiber of length
lg = 50 km, if no dispersion (and no absorption) is taken
into account.

Two remarks:

(1) The phase shifts ∆d and ∆m easily could be substi-
tuted by enlargements of the corresponding lengths
of the fibers. This signifies that the phase shifts de-
pend on the group index as well as on the dispersion
coefficient.

(2) Another short remark should be made here which is
valid for all figures relating to position distributions
below as well: the x− scale denotes the distance the
photon has to cover as if it would travel in vacuum.
Because of the group index the photon needs therefore
more time to travel (t = x/c0) in a glass fiber of a
certain length than in vacuum, it is slower, of course.

 75002.99 75002.995     75003 75003.005  75003.01 75003.015  75003.02 75003.025
0

5

10

15

20

25

30

35

40

45

x[m]

Position Distribution

|ψ
p
(x)|2

Fig. 4. Same parameters as in Figure 3; please observe the
different ordinate scales. The side wings in Figure 3 are exactly
the same as the two peaks here.

The 2 side peaks, which appear in Figure 3 are due
to the fact that the photons take the short arms in each
of the two interferometers or propagate through the long
arms respectively (i.e. the arms with the phase shifters ∆d

and ∆m). Therefore, these two side peaks are separated
from each other by a value of ∆d +∆m = 2 cm. The mean
position values xl and xr, due to the left and right peaks,
come from xl = (lg + lc + ln)N0 = 50002× 1.5 = 75003 m
and xr = (lg + ld + lm)N0 + ∆d + ∆m = 75003.02 m,
respectively. These are the mean (hypothetical) distances
the photons have to cover, if the short-short and long-
long processes are taken into account and if the photons
have the vacuum speed of light. Output o in Figure 3 ex-
hibits an additional peak in between, which is four times
as large. This is only true if ∆d = ∆m. The short-long and
long-short processes are indistinguishable and give rise to
constructive interference in this case. In the other beam p
(Fig. 4) destructive interference occurs due to the phase
factor of the Hadamard transformation of the beam split-
ter and hence no peak in between appears. The full width
of half maximum (FWHM) can be calculated via

(δx) =
1

2(δk)
=

1
4π

λ0

(δλ)
λ0,

FWHM =
√

8 ln 2 (δx) ≈ 0.00145 m (25)

using λ0 = 1550 nm and δλ/λ0 = 2 × 10−4. Because of
the complete separation of the pulses, phase coding can
be executed perfectly. However, this case is hypothetical
because CD has been omitted.

The corresponding λ−distribution functions |αo,p(λ)|2
can be calculated according to equations (19) and (11)
and are drawn in Figure 5. Because of photon conserva-
tion, we have α2

a(λ) = |αh(λ)|2+|αo(λ)|2+|αp(λ)|2, where
the envelope in Figure 5 is the input function (3). The
distributions are depicted as functions of the wavelength
λ = 2π/k which is more commonly used for presenta-
tion. Because of the 2 phase shifts the wavelength spectra
get distinct oscillatory structures indicating separation of
wave packets in space (or time). For comparison only, the
spectrum |αh(λ)|2 of the output port h is drawn as well.
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Fig. 5. δλ/λ0 = 2 × 10−4, λ0 = 1550 nm.

Note that separation of wave packets in space entail en-
ergy spectra of an oscillatory behavior as seen in Figure 5.

Figure 6 presents the position distributions of the out-
put modes o and p, with the only major difference of in-
cluding CD for λ0 = 1550 nm, which means including a
κ of −0.3072 nm according to Table 1 in Section 3. In-
cluding CD supplies a much more realistic representation
than before (Figs. 3 and 4). It will be shown below that
the including of CD is absolutely necessary. The quan-
tity κ comes into play via Bg = κlg and hence becomes
important for large fiber lengths like lg = 50 km in this
case. As can be seen, a completely different picture of po-
sition distributions, in comparison to Figures 3 and 4, ap-
pears in Figure 6. First of all, the spectra are shifted to
smaller x−values by about 124.5 m. This comes from for-
mulas (24) and (21), where it can be seen that the shifting
amounts to 2κk0(lg + lc + ln). Secondly, the region has
been broadened from 2 cm in Figures 3 and 4 to about
15 cm in Figure 6. This is discussed below more precisely.
And thirdly, both spectra, |ψo(x)|2 and |ψp(x)|2, exhibit
heavily oscillations. The frequency of these modulations is
given by the interference terms in (23) and (24). As can
be seen there, the modulations depend on the quantity
zij(x) in the argument of the cosine. Because of the rela-
tively large value of lg = 50 km, δij becomes large entailing
large frequencies. Likewise, these modulations depend on
κ as it is shown in the equations mentioned above. Hence,
in this case, it is completely impossible to execute phase
coding.

A better but still not sufficient situation may be
achieved if the length lg of the fiber is shortened to
10 km and the interferometers are unchanged, as can be
seen in Figure 7. |ψp(x)|2 exhibits 2 peaks (separated
by 2 cm because of the phase shifters) which are broad-
ened, and an interfering part is visible in between, where
the pulses overlap each other including amplitude mod-
ulations. |ψo(x)|2 is a highly oscillating function and no
distinct separation is possible between the central peak
and the side wings, whereas in Figure 3 this separation is
clearly visible.

In Figure 8 lg = 1 km is taken. The peaks now can be
isolated as before. Left and right peaks are separated by a
value of 2 cm, of course. The mean position of the left peak,
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Fig. 6. With CD: κ = −0.3072 nm for λ0 = 1550 nm, lg =
50 km.

14978.07 14978.08 14978.09  14978.1 14978.11 14978.12 14978.13
0

5

10

15

20

25

30

x[m]

Position Distribution

|ψ
o
(x)|2

|ψ
p
(x)|2
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Fig. 8. With CD: κ = −0.3072 nm for λ0 = 1550 nm, lg =
1 km.

for example, can be calculated using (7), (21) and (24). We
obtain: xl = (lg+lc+ln)[N0+2κk0] = 1503 m−2.4955 m =
1500.5045 m as can be observed from Figure 8. CD causes
a shift of −2.4955 m if lg = 1 km is taken. Clearly one
recognizes that the peaks have been broadened due to CD
in comparison to Figure 3. One obtains from (24) and (21)
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Fig. 9. With CD: the same parameters as in Figure 6 (lg =
50 km), but with the exception that the two phase shifters are
50 times larger as before: ∆d = ∆m = 0.5 m.

for each of the three peaks (ij = dm, dn, cm, cn):

(δx)disp =
1

2(δk)
√
γij , (26)

γij = 1 + 16(δk)4δ2ij = 1 + 16(δk)4κ2(lg+li+lj)2.
(27)

FWHMdisp =
√

8 ln 2 (δx)disp ≈ 0.00187 m.
The FWHM’s of the wave packets have been aug-

mented from 0.00145 m in Figure 3 (see Eq. (25)) to
0.00187 m in Figure 8 (Eq. (26)), whereas the heights are
correspondingly reduced by approximately the same ratio.
But observe that in Figure 3 (without CD) the length lg of
the fiber is 50 km whereas in Figure 8 (with CD) lg is only
1 km. It can be concluded that, taking CD into account,
one cannot securely perform phase coding unless the dis-
tance lg between the 2 MZ interferometers is less or ap-
proximately 1 km provided that the parameters above are
used (∆d = ∆m = 1 cm). It should be noted that the wave-
length distributions remain unchanged (Fig. 5) because
the k2− part of the argument of the cosine in (19) and (11)
cancels out in this special case (ld = lc = lm = ln = 1 m).

Finally we present in Figure 9 a result, where the
length lg of the fiber is again 50 km as before, but the
phase shifters ∆d and ∆m in both interferometers are
50 times larger, that is to say 0.5 m. The resulting plot
in Figure 9 looks similar to Figure 8, because both, the
phase shifts in the two interferometers and the length of
the fiber lg are increased by the same factor 50, but now
the heights of the separated peaks are strongly reduced
and the broadness of each peak is increased according to
(26) (FWHMdisp ≈ 0.059 m). Thus, using formulas (19),
(22) and (26) can be very helpful in order to analyze the
system under consideration.

Note that the calculations above were just sim-
ple examples. Observe that the wavelength distribution
|αo,p(λ)|2 of (19) and the position distribution |ψo,p(x)|2
of (22) are functions of the mean wavelength λ0, the mean
square deviation of wavelengths (δλ/λ0)2, the group in-
dex N0, the dispersion parameter κ, the lengths of the
fibers li, the phase shifters ∆i and the transmission co-
efficients Ti. Thus the presented formulas can be broadly

applied to very different configurations of interferometric
installations.

7 Summary and conclusion

In this paper, the impact of CD in a double MZ inter-
ferometer implementation, applied for phase-coding sys-
tems in quantum cryptography, has been investigated the-
oretically. The Gaussian wave packet description has been
adopted. Thereby, the mean wavelength λ0 and the mean
square deviation (δλ)2 of wavelengths describe the char-
acteristics of the incoming beam. The two MZ interferom-
eters are specified by means of beam splitters, the lengths
of the fibers, phase shifters and absorbers. Formulas of
position- and wavelength distributions, easily applicable in
a simple computer program, have been developed, which
are useful to examine in detail the influence of CD in such
a system. A simple example has been applied, demon-
strating the influence of CD on phase-coding in quan-
tum cryptographic systems working with 2 fiber-optical
MZ interferometers in series. Especially in very long glass
fibers linking the 2 interferometers (for instance 50 km
and more) CD becomes more and more an important fac-
tor and should be taken into consideration.

Concerning the application of the weak coherent pulse
method as well as the entanglement-based method, we be-
lieve that the considerations above can be helpful for those
dealing with quantum cryptographic devices like phase-
coding systems based on interferometric methods using
single-mode fiber optics.
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